ANALYZING DECADAL MANGROVE COVER CHANGE IN THE BANGLADESHI SUNDARBANS USING REMOTE SENSING
By: Md. Imran Hossain, Sabbir Ahmed Sweet, Nafia Muntakim, Mst. Tasnima Khatun, Shanita Tahnin, Tomalika Biswas, Md. Mujibor Rahman, Md. Redwanur Rahman
Key Words: Ecosystem monitoring, Land Cover Classification, Mangrove Degradation, Remote Sensing, Sundarbans
01 IES Volume- 12-01 pg1-15, December 2025.
AbstractThe Sundarbans Mangrove Forest in Bangladesh, the world’s largest tidal mangrove ecosystem, has undergone substantial ecological change over the past five decades. This study investigates land cover transformation from 1975 to 2025 using atmospherically corrected Landsat imagery and supervised Maximum Likelihood Classification (MLC). The landscape was categorized into four classes-Dense Forest, Sparse Forest, Bare Soil, and Water-across six periods to identify long-term spatial patterns and ecological vulnerabilities. Results reveal a 31.07% reduction in Dense Forest area (from 3914.06 km² to 2697.82 km²), accompanied by a 383.67% increase in Sparse Forest and a nearly 300% rise in Bare Soil. These trends reflect forest fragmentation, degradation, and progressive thinning of canopy cover, largely driven by upstream hydrological alterations, salinity intrusion, and increasing anthropogenic pressure. While the Water class showed minimal net change in surface extent, localized gains and losses aligned with tidal influence and sedimentation cycles. Transition matrices and gain-loss analyses identified southern estuarine margins and forest edges as degradation hotspots, while northern zones exhibited localized signs of regeneration. The classification results achieved high accuracy levels (84% to 92.3%) with Kappa values exceeding 0.80, confirming methodological reliability. This study emphasizes the need for integrated conservation, restoration planning, and improved freshwater governance to mitigate further degradation. The findings provide a scientific basis for adaptive ecosystem management in one of the world’s most climate-sensitive coastal environments.
-doski, J., Mansor, S. B. and Shafri, H. Z. M. 2013. Image classification in remote sensing. International Journal of Engineering Research and Technology (IJERT), 2(11), 2278–0181.
Bhattacharjee, S., Islam, M. T., Kabir, M. E. and Kabir, M. M. 2021. Land-use and land-cover change detection in a north-eastern wetland ecosystem of Bangladesh using remote sensing and GIS techniques. Earth Systems and Environment, 5(2), 319–340. https://doi.org/10.1007/s41748-021-00228-3
Bomer, E. J., Wilson, C. A., Hale, R. P., Hossain, A. N. M. M. and Rahman, F. M. A. 2020. Surface elevation and sedimentation dynamics in the Ganges-Brahmaputra tidal delta plain, Bangladesh: Evidence for mangrove adaptation to human-induced tidal amplification. Catena, 187, 104312. https://doi.org/10.1016/j.catena.2019.104312
Chander, G., Markham, B. L., and Helder, D. L. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903. https://doi.org/10.1016/j.rse.2009.01.007
Chowdhury, M. S. and Hafsa, B. 2022. Multi-decadal land cover change analysis over Sundarbans Mangrove Forest of Bangladesh: A GIS and remote sensing based approach. Global Ecology and Conservation, 37, e02151. https://doi.org/10.1016/j.gecco.2022.e02151
Dasgupta, S., Sobhan, M. I. and Wheeler, D. 2015. Climate change and soil salinity: The case of coastal Bangladesh. Ambio, 44(8), 815–826. https://doi.org/10.1007/s13280-015-0681-5
Emch, M. and Peterson, M. 2006. Mangrove forest cover change in the Bangladesh Sundarbans from 1989–2000: A remote sensing approach. Geocarto International, 21(1), 5–12. https://doi.org/10.1080/10106040608542368
Foody, G. M. 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201. https://doi.org/10.1016/S0034-4257(01)00295-4
Ghosh, M. K., Kumar, L. and Roy, C. 2016. Mapping long-term changes in mangrove species composition and distribution in the Sundarbans. Forests, 7(12), 305. https://doi.org/10.3390/f7120305
Giri, C., Long, J., Abbas, S., Murali, R. M., Qamer, F. M., Pengra, B., and Thau, D. 2015. Distribution and dynamics of mangrove forests of South Asia. Journal of Environmental Management, 148, 101–111. https://doi.org/10.1016/j.jenvman.2014.06.020
Giri, C., Ochieng, E., Tieszen, L. L., Zhu, Z., Singh, A., Loveland, T., … and Duke, N. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20(1), 154–159. https://doi.org/10.1111/j.1466-8238.2010.00584.x
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X. and Ferreira, L. G. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2
Islam, M. M. and Bhuiyan, M. A. H. 2018. A study on remote sensing-based land use classification in the Sundarbans using Landsat imagery. Journal of Environmental Science and Natural Resources, 11(1–2), 113–121.
Jensen, J. R. 2015. Introductory digital image processing: A remote sensing perspective (4th ed.). Pearson Education.
Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., … and Rabe, A. 2016. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sensing, 8(1), 70. https://doi.org/10.3390/rs8010070
Kanjin, K. and Alam, B. M. 2024. Assessing changes in land cover, NDVI, and LST in the Sundarbans mangrove forest in Bangladesh and India: A GIS and remote sensing approach. Remote Sensing Applications: Society and Environment, 36, 101289. https://doi.org/10.1016/j.rsase.2024.101289
Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V. and Dech, S. 2011. Remote sensing of mangrove ecosystems: A review. Remote Sensing, 3(5), 878–928. https://doi.org/10.3390/rs3050878
Kundu, K., Halder, P. and Mandal, J. K. 2020. Forest cover change analysis in Sundarban delta using remote sensing data and GIS. In J. K. Mandal & D. Sinha (Eds.), Intelligent computing paradigm: Recent trends (pp. 85–101). Springer. https://doi.org/10.1007/978-981-13-7334-3_7
Lu, D., and Weng, Q. 2007. A survey of image classification methods and techniques for improving classification performance. Remote Sensing of Environment, 110(3), 337–349. https://doi.org/10.1016/j.rse.2007.03.001
Negassa, M. D., Mallie, D. T., and Gemeda, D. O. 2020. Forest cover change detection using Geographic Information Systems and remote sensing techniques: A spatio-temporal study on Komto Protected forest priority area, East Wollega Zone, Ethiopia. Environmental Systems Research, 9(1), Article 1. https://doi.org/10.1186/s40068-020-0163-z
Patra, T. 2024. Impacts of climate change on the Sundarbans mangrove ecosystem: A comprehensive analysis. International Research Journal of Modernization in Engineering, Technology and Science, 6(8), 1171–1178. https://doi.org/10.56726/IRJMETS60970
Potapov, P. V., Turubanova, S. A., Hansen, M. C., Adusei, B., Broich, M., Altstatt, A., … and Egorov, A. 2012. Quantifying forest cover loss in Democratic Republic of the Congo, 2000–2010, with Landsat ETM+ data. Remote Sensing of Environment, 122, 106–116. https://doi.org/10.1016/j.rse.2011.08.027
Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., … and Zhu, Z. 2014. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172. https://doi.org/10.1016/j.rse.2014.02.001
Roy, S. K., Alam, M. S. and Hossain, M. I. 2025. Vegetation dynamics in the Sundarbans Mangrove Forest (1975–2025) using NDVI-based remote sensing analysis. Global Ecology and Conservation, 58, e03493. https://doi.org/10.1016/j.gecco.2025.e03493
Sunkur, R., Hazra, S., Chatterjee, K., and Maiti, R. 2024. Mangrove mapping and monitoring using remote sensing techniques towards climate change resilience. Scientific Reports, 14, 6949. https://doi.org/10.1038/s41598-024-57563-4
Tucker, C. J. 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127–150. https://doi.org/10.1016/0034-4257(79)90013-0
Uddin, M. S., Shah, M. A. R., Khanom, S. and Nesha, M. K. 2014. Climate change impacts on the Sundarbans mangrove ecosystem services and dependent livelihoods in Bangladesh. Asian Journal of Conservation Biology, 2(2), 152–156.
Vermote, E. F., Justice, C., Claverie, M. and Franch, B. 2016. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, 185, 46–56. https://doi.org/10.1016/j.rse.2016.04.008
Md. Imran Hossain, Sabbir Ahmed Sweet, Nafia Muntakim, Mst. Tasnima Khatun, Shanita Tahnin, Tomalika Biswas, Md. Mujibor Rahman, Md. Redwanur Rahman
ANALYZING DECADAL MANGROVE COVER CHANGE IN THE BANGLADESHI SUNDARBANS USING REMOTE SENSING
01 IES Volume- 12-01 pg1-15, December 2025.
https://jenvosci.com/ies-publish/analyzing-decadal-mangrove-cover-change-in-the-bangladeshi-sundarbans-using-remote-sensing/Copyright © 2023
By Authors and International Environmental Science (IES)
https://jenvosci.com


