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 The Sundarbans Mangrove Forest in Bangladesh, the world’s largest tidal mangrove 

ecosystem, has undergone substantial ecological change over the past five decades. 

This study investigates land cover transformation from 1975 to 2025 using 

atmospherically corrected Landsat imagery and supervised Maximum Likelihood 

Classification (MLC). The landscape was categorized into four classes-Dense 

Forest, Sparse Forest, Bare Soil, and Water-across six periods to identify long-term 

spatial patterns and ecological vulnerabilities. Results reveal a 31.07% reduction in 

Dense Forest area (from 3914.06 km² to 2697.82 km²), accompanied by a 383.67% 

increase in Sparse Forest and a nearly 300% rise in Bare Soil. These trends reflect 

forest fragmentation, degradation, and progressive thinning of canopy cover, largely 

driven by upstream hydrological alterations, salinity intrusion, and increasing 

anthropogenic pressure. While the Water class showed minimal net change in 

surface extent, localized gains and losses aligned with tidal influence and 

sedimentation cycles. Transition matrices and gain-loss analyses identified southern 

estuarine margins and forest edges as degradation hotspots, while northern zones 

exhibited localized signs of regeneration. The classification results achieved high 

accuracy levels (84% to 92.3%) with Kappa values exceeding 0.80, confirming 

methodological reliability. This study emphasizes the need for integrated 

conservation, restoration planning, and improved freshwater governance to mitigate 

further degradation. The findings provide a scientific basis for adaptive ecosystem 

management in one of the world’s most climate-sensitive coastal environments. 

 

1. Introduction 

The Sundarbans Mangrove Forest, located at the confluence 

of the Ganges, Brahmaputra, and Meghna rivers, is the largest 

continuous mangrove forest in the world, stretching across 

approximately 10,000 square kilometers in Bangladesh and 

India (Giri et al., 2011). This unique ecosystem plays an 

essential role in biodiversity conservation, carbon 

sequestration, storm protection, and supporting the livelihoods 

of millions of people. The Sundarbans provide critical habitat 

for iconic and endangered species including the Royal Bengal 

Tiger (Panthera tigris tigris), estuarine crocodiles 
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(Crocodylus porosus), and the Irrawaddy dolphin (Orcaella 

brevirostris) (Uddin et al., 2014; Ghosh et al., 2016). 

Despite its ecological and socio-economic importance, the 

Sundarbans are facing unprecedented degradation due to both 

anthropogenic and climatic stressors. Population pressure, 

illegal logging, shrimp farming, and infrastructural 

development continue to encroach on mangrove habitats. 

Simultaneously, climate change-induced factors such as sea-

level rise, salinity intrusion, increased frequency of cyclones, 

and coastal erosion further exacerbate the forest's 

vulnerability (Dasgupta et al., 2015; Patra, 2024). In 

particular, altered river discharge caused by upstream water 

management practices, including the Farakka Barrage, has 

reduced the availability of freshwater, enhanced salinization, 

and shifted vegetation composition (Uddin et al., 2014; 

Bomer et al., 2020). Similar patterns of reduced freshwater 

flow and increasing salinity stress have also been identified in 

recent studies analyzing decadal mangrove change, 

highlighting regional-scale hydrological and anthropogenic 

impacts (Emch & Peterson, 2006; Chowdhury & Hafsa, 2022; 

Kanjin et al., 2024). However, while previous studies have 

advanced understanding of vegetation health and spectral 

variability, they have not fully explored multi-decadal, 

statistically grounded land cover classification across 

ecologically distinct categories. 

Given these dynamics, there is an urgent need for regular, 

long-term monitoring of land cover dynamics in the 

Sundarbans to inform conservation and policy efforts 

(Bhattacharjee et al., 2021; Kundu et al., 2020). Remote 

sensing has emerged as an indispensable tool for such 

monitoring due to its ability to provide synoptic, repeatable 

observations across large and inaccessible landscapes 

(Kuenzer et al., 2011; Negassa et al., 2020). Among various 

remote sensing techniques, supervised classification methods 

like the Maximum Likelihood Classification (MLC) have 

proven effective for producing reliable land cover maps, 

particularly in heterogeneous and fragmented ecosystems like 

mangrove forests (Al-doski et al., 2013; Jensen, 2015). 

While studies using vegetation indices such as the Normalized 

Difference Vegetation Index (NDVI) have been helpful in 

tracking vegetation health (Bhattacharjee et al., 2021), they 

do not provide explicit land cover category delineations. 

NDVI is limited to spectral indicators of greenness and cannot 

differentiate between ecologically significant classes like 

sparse vs. dense forest or soil vs. degraded vegetation 

(Tucker, 1979; Huete et al., 2002). In contrast, MLC 

facilitates a more detailed and accurate classification of 

multiple land cover types by assigning pixels based on 

statistical probabilities and training samples. 

Despite the potential of MLC for mapping complex 

vegetation structures, relatively few studies have conducted 

multi-decadal classification of the Sundarbans using this 

method. MLC offers a statistically robust approach especially 

suited for ecosystems with overlapping spectral characteristics 

like mangrove forests, making it a suitable choice for this 

long-term analysis. One of the earlier efforts to examine 

Sundarbans mangrove cover change using Landsat imagery 

applied multiple classification methods including MLC, 

NDVI differencing, and subpixel classification to assess forest 

dynamics between 1989 and 2000 (Emch & Peterson, 2006).  

Existing literature either focuses on short time spans or lacks 

robust accuracy assessments and spatial change detection 

(Sunkur et al., 2024). Furthermore, little emphasis has been 

placed on identifying transition hotspots - areas where rapid 

or frequent class change occurs - which are crucial for 

prioritizing restoration or protective interventions (Roy et al., 

2025). 

This study seeks to bridge these gaps by conducting a 

comprehensive, multi-decadal land cover classification and 

transformation analysis of the Sundarbans from 1975 to 2025. 

Using atmospherically corrected Landsat data and supervised 

MLC, we categorized the landscape into four classes: Water, 

Bare Soil, Sparse Forest, and Dense Forest. We also 

performed spatiotemporal analyses to map transition hotspots 

and assess ecological vulnerability. This approach 

complements and extends previous efforts such as Kanjin et 

al. (2024), who used NDVI and PCA to detect mangrove 

degradation patterns over three decades, though their 

classification lacked categorical delineation between forest 

conditions. 

The specific objectives of this research are to: Conduct a 

long-term, quantitative analysis of land cover changes from 

1975 to 2025 in the Sundarbans Mangrove Forest using 

supervised Maximum Likelihood Classification (MLC). 

Quantify major land cover transitions and identify ecological 

degradation zones in the Sundarbans between 1975 and 2025. 

Provide long-term, evidence-based insights for conservation 

and restoration planning. 

 

2. Materials and Methods 

2.1 Study Area 

In this study, the Bangladeshi part of the Sundarbans has been 

selected as the primary focus area (Fig. 1). It lies between 

21.5° to 22.5° N latitude and 88.0° to 89.5° E longitude, 

covering the southwestern coastal districts of Satkhira, 

Khulna, and Bagerhat. The Sundarbans Mangrove Forest, 

located at the confluence of the Ganges, Brahmaputra, and 

Meghna River systems, forms the largest contiguous tidal 

halophytic mangrove forest in the world. Spanning 

approximately 10,000 km² across Bangladesh and India, it 

plays a crucial role in maintaining the ecological and socio-

economic stability of the region. The Bangladeshi portion of 

the Sundarbans alone covers around 6,017 km² and represents 

about 60% of the total forest area (Ghosh et al., 2016; Roy et 

al., 2025). 
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Figure 1: Study Area Map 

Climatically, the Sundarbans experience a humid tropical 

monsoon environment with three distinct seasons: summer 

(March–May), monsoon (June–September), and winter 

(October–February). The region receives annual precipitation 

ranging from 1,500 mm to 2,500 mm and has a mean 

temperature between 20°C in winter and 34°C in summer 

(Dasgupta et al., 2015). These climate characteristics 

influence seasonal water levels and vegetation patterns. 

Hydrologically, the forest is shaped by semi-diurnal tides 

from the Bay of Bengal, resulting in regular inundation and 

exposure. These tides form estuarine systems, intertidal 

mudflats, tidal creeks, and brackish water channels, helping 

the forest buffer storm surges and support sediment and 

nutrient cycling. 

Ecologically, the forest hosts salt-tolerant mangrove species 

such as Heritiera fomes (Sundri), Excoecaria agallocha 

(Gewa), and Sonneratia apetala (Keora), which stabilize the 

shoreline and contribute to ecological services like carbon 

sequestration and water purification (Patra, 2024; Uddin et 

al., 2014). 

The Sundarbans also shelters globally threatened species such 

as the Royal Bengal Tiger, estuarine crocodiles, and 

Irrawaddy dolphins, and supports local livelihoods through 

fisheries, honey collection, fuelwood, and traditional 

medicine. 

2.2 Remote Sensing Data Acquisition 

To comprehensively monitor land cover transformations 

within the Sundarbans Mangrove Forest over a five-decade 

period (1975–2025), multi-temporal satellite imagery from 

the Landsat program was employed. The Landsat program, 

jointly managed by NASA and the United States Geological 

Survey (USGS), provides one of the longest continuous 

records of Earth observation and is considered highly suitable 

for temporal change analysis due to its moderate spatial 

resolution, multispectral capabilities, and consistent revisit 

intervals. All imagery was accessed and downloaded via the 

USGS Earth Explorer platform, which offers open-access 



Md. Imran Hossain et al., 

 

4  

satellite datasets suitable for long-term environmental 

monitoring. 

For this study, data were retrieved from four different Landsat 

sensors- Landsat-2 Multispectral Scanner System (MSS), 

Landsat-5 Thematic Mapper (TM), Landsat-8 Operational 

Land Imager (OLI), and Landsat-9 OLI-2. The selection of 

these sensors was based on their availability for the 

corresponding time periods and their compatibility in terms of 

spatial and spectral resolutions necessary for land cover 

classification. Specifically, images were selected for the years 

1975, 1988, 1995, 2005, 2015, and 2025 to provide a decadal 

interval framework, capturing long-term land surface 

dynamics. The detailed metadata, including sensor type, 

path/row identifiers under the Worldwide Reference System 

(WRS), and acquisition dates, are summarized in Table 1. 

Table 1. Landsat Imagery Details 

Year Sensor Path/Row (WRS) Acquisition Date 

1975 Landsat-2 MSS 147/045, 148/044 (WRS-1) 27 & 28 March 

1988 Landsat-5 TM 137/045, 138/045 (WRS-2) 19 Feb & 25 Jan 

1995 Landsat-5 TM 137/045, 138/045 (WRS-2) 21 & 28 Jan 

2005 Landsat-5 TM 137/045, 138/045 (WRS-2) 16 & 07 Jan 

2015 Landsat-8 OLI 137/045, 138/045 (WRS-2) 28 Jan & 04 Feb 

2025 Landsat-9 OLI 137/045, 138/045 (WRS-2) 15 & 22 Jan 

 

To minimize seasonal bias and ensure spectral consistency, 

only dry season images (January to March) with less than 

10% cloud cover were used (Bhattacharjee et al., 2021). This 

approach improves reflectance quality by avoiding monsoon-

related distortions. 

While 1985 would have been ideal for maintaining temporal 

symmetry, cloud-free imagery for that year was unavailable. 

Following similar studies (Ghosh et al., 2016; Chowdhury & 

Hafsa, 2022), 1988 was selected as the closest viable 

substitute. 

Given the extensive spatial footprint of the Sundarbans, 

particularly under the WRS-1 system used for Landsat MSS 

data, multiple adjacent scenes were required to achieve full 

spatial coverage. As a result, scene mosaicking was carried 

out for the years where a single path/row combination was 

insufficient-most notably for the 1975 MSS dataset. This 

ensured that the entire Bangladeshi portion of the Sundarbans 

was consistently represented across all temporal snapshots, 

thereby enhancing the reliability of comparative land cover 

analysis. 

A detailed visual representation of the entire methodological 

framework, including preprocessing, classification, and post-

classification analyses, is illustrated in Figure 2. This 

workflow chart serves as a step-by-step guide to the remote 

sensing and GIS-based approach employed in this study for 

land cover change detection in the Sundarbans from 1975 to 

2025. 
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Figure 2: Methodological Workflow of Remote Sensing-Based Land Cover Classification in the Sundarbans (1975–

2025). 

2.3 Image Preprocessing 

Accurate land cover classification in multi-temporal studies 

heavily depends on comprehensive image preprocessing to 

ensure consistency and comparability across datasets acquired 

from different sensors over several decades. Therefore, a 

systematic preprocessing protocol was adopted to address 

variations in radiometric response, geometric alignment, 

sensor-specific artifacts, and temporal differences in data 

acquisition. 

Radiometric and Atmospheric Correction 

 

The Landsat-2 MSS imagery from 1975, lacking Level-2 

surface reflectance products, was calibrated by converting 

Digital Numbers (DNs) to Top-of-Atmosphere (TOA) 

reflectance using sensor-specific coefficients and solar angle 

adjustments (Chander et al., 2009; Tucker, 1979). For 

Landsat-5 TM, Landsat-8 OLI, and Landsat-9 OLI-2, 

Collection 2 Level-2 surface reflectance products were used. 

These are atmospherically corrected using the LaSRC 

algorithm and 6S radiative transfer model, ensuring spectral 

consistency (Vermote et al., 2016; Roy et al., 2014). 

Geometric Correction and Reprojection 

 

To align all images spatially for overlay and analysis, 

geometric correction and reprojection were performed. All 

datasets were reprojected to the WGS 1984 UTM Zone 46N 

coordinate system using ArcGIS 10.8. This step ensured 

consistent pixel alignment and spatial accuracy, allowing for 

seamless cross-year comparisons and precise spatial analyses 

of change patterns (Jensen, 2015). 

Destriping and Resampling (MSS Data) 

 

Landsat-2 MSS images exhibited striping artifacts due to 

sensor limitations. These were mitigated using a Fourier 

transform-based destriping filter in ENVI 5.3. The original 

60-meter resolution was resampled to 30 meters using bilinear 

interpolation for compatibility with later datasets 

(Bhattacharjee et al., 2021. This resampling was essential for 

maintaining consistency across spatial datasets and ensuring 

compatibility during classification and transformation 

analysis (Islam & Bhuiyan, 2018). 

Image Mosaicking and Layer Stacking 

 

For years requiring multiple scenes (especially MSS data), 

adjacent path/row images were mosaicked using ENVI 5.3. 

Bands were then stacked to generate multiband composites, 

which were clipped to the Sundarbans study area using a 

predefined boundary shapefile (Patra, 2024). 

MLC 
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2.4 Maximum Likelihood Classification (MLC) 

To classify the land cover types within the Sundarbans 

Mangrove Forest across the six reference years (1975, 1988, 

1995, 2005, 2015, and 2025), a supervised classification 

technique known as the Maximum Likelihood Classifier 

(MLC) was employed. MLC is widely recognized for its 

effectiveness in classifying complex and heterogeneous 

landscapes, particularly in mangrove ecosystems where 

spectral overlap between vegetation classes is common (Lu & 

Weng, 2007; Ghosh et al., 2016; Kundu et al., 2020; Negassa 

et al., 2020). Among various available classification 

algorithms, MLC was chosen for its robustness in pixel-based 

statistical modeling and its proven suitability in previous 

multi-temporal land cover studies in similar environments. 

Compared to object-based or machine learning classifiers like 

Random Forest or Support Vector Machines, MLC offers a 

balance between classification accuracy and computational 

efficiency, especially when high-resolution training samples 

and consistent spectral bands are available. 

The algorithm assumes a normal (Gaussian) distribution of 

reflectance values for each land cover class and assigns each 

pixel to the class with the highest probability. Four distinct 

land cover classes were defined based on ecological relevance 

and visual interpretability: Water, Bare Soil, Sparse Forest, 

and Dense Forest. These categories represent both natural and 

anthropogenically altered landscapes in the Sundarbans. 

Training samples for each class were carefully selected for all 

reference years using a combination of field knowledge, 

visual inspection, and high-resolution Google Earth Pro 

imagery. Particular attention was given to ensuring temporal 

consistency in training data to allow for valid comparisons 

across decades. 

The classification procedure was carried out using ArcGIS 

10.8, and the raw output was further refined using a 3×3 

majority filter. This smoothing technique helps remove 

isolated misclassified pixels, commonly referred to as "salt-

and-pepper noise," thereby improving the spatial coherence of 

classified patches. 

The final classified maps for all six years serve as the 

foundation for land cover change detection and spatial 

transformation analysis. These maps are presented in the 

Results section (Figures 3–5) to demonstrate the temporal 

dynamics and spatial distribution of each land cover category 

over the five-decade study period. 

Note: The detailed visual outputs of the classification process, 

including comparative MLC maps for 1975 to 2025, are 

provided in Section 3 (Results and Discussion). 

2.5 Land Cover Transformation Analysis 

Land cover change detection was performed using the 

classified maps through a series of geospatial operations in 

ArcGIS 10.8. Classified rasters were first converted to vector 

format, and change zones between consecutive time periods 

were identified using intersect and dissolve operations. 

Polygon geometry was then calculated to determine area 

values (in square kilometers), and the resulting attribute tables 

were exported to Microsoft Excel for temporal comparison 

and transition matrix generation. 

 

2.6 Accuracy Assessment 

To evaluate the reliability of the classified land cover maps 

across the six temporal datasets (1975, 1988, 1995, 2005, 

2015, and 2025), a rigorous accuracy assessment protocol was 

followed. A stratified random sampling technique was 

employed, with approximately 100 reference points generated 

per year to ensure balanced coverage of all land cover classes. 

For the years 1988 to 2025, validation of these points was 

conducted using high-resolution historical imagery from 

Google Earth Pro (Bhattacharjee et al., 2021), which allowed 

precise visual interpretation and cross-verification with 

classified outputs. In contrast, the 1975 classification lacked 

access to such high-resolution temporal data; therefore, 

accuracy validation for this year was based on expert 

interpretation of the Landsat MSS imagery and corroboration 

with historical land use maps and ancillary data sources 

(Foody, 2002). 

The following key accuracy metrics were computed: 

Overall Accuracy (%)

= (
Total Number of Correctly Classified Pixels

Total Number of Reference Pixels
) × 100 

Kappa =
𝑁∑𝑥𝑖𝑖 − ∑𝑥𝑖 + 𝑥 + 𝑖

N2 − ∑xi + x + i
 

 

 

Where: 

• 𝑥𝑖𝑖 = Number of correctly classified pixels in the ith 

class (diagonal elements) 

• 𝑥𝑖= Row totals (classified totals) 

• 𝑥 + 𝑖 = Column totals (reference totals) 

• 𝑁 = Total number of reference pixels 
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Across all classification years, the assessment results 

demonstrated consistently strong accuracy levels. Overall 

Accuracy (OA) and Kappa Coefficient were calculated for 

each classification year. OA ranged from 84.0% (1975) to 

92.3% (2015), and Kappa values consistently exceeded 0.80, 

with the highest (0.91) in 2015. The relatively lower accuracy 

in 1975 reflects limitations of coarser-resolution MSS data. 

Dense Forest consistently recorded the highest Producer’s and 

User’s Accuracy, while Sparse Forest and Bare Soil 

occasionally showed lower values due to intermediate spectral 

responses. These findings confirm the robustness of the MLC 

method in mapping long-term land cover change in the 

Sundarbans. 

3. Results and Discussion 

3.1 Results 

The supervised Maximum Likelihood Classification (MLC) 

applied across six distinct periods- 1975, 1988, 1995, 2005, 

2015, and 2025 revealed clear and compelling land cover 

transitions within the Sundarbans Mangrove Forest. 

Leveraging multi-temporal Landsat datasets and advanced 

classification techniques, four primary land cover categories 

were delineated: Water, Bare Soil, Sparse Forest, and Dense 

Forest. The classified land cover maps across these years are 

presented in Figure 3, while the quantified land cover areas 

and their corresponding percentages are summarized in Table 

2. 

 

Figure 3: MLC-based Land Cover Maps of the Sundarbans (1975–2025) 

A notable and continuous decline in Dense Forest cover was 

observed over the five-decade span. In 1975, Dense Forest 

covered approximately 3914.06 km², accounting for 65.17% 

of the study area. By 2025, this figure had diminished to 

2697.82 km² (44.94%), reflecting a net loss of 1216.24 km²-

equivalent to a 31.07% reduction. The classified imagery 

clearly demonstrates a substantial decline in Dense Forest 

cover, especially in core zones, which corresponds with areas 

known to be affected by salinity intrusion, reduced freshwater 

inflow, and increasing anthropogenic pressure such as 

settlement expansion and resource extraction (Giri et al., 

2015; Patra, 2024). Kanjin et al. (2024) similarly observed a 

declining vegetation trend using NDVI analyses, particularly 

in the southern Sundarbans, reinforcing the degradation 

patterns presented here. Spatially, this decline was 

concentrated along the southern and southwestern tidal fronts, 

where erosion and saline inundation are prevalent. 

In contrast, Sparse Forest areas increased markedly, 

expanding from 254.31 km² (4.23%) in 1975 to 1229.99 km² 
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(20.49%) in 2025. This 383.67% increase signifies 

widespread forest thinning, which may reflect not only 

ecological stressors like cyclonic damage and altered tidal 

flow but also partial regeneration in previously degraded 

zones (Dasgupta et al., 2015; Uddin et al., 2014). These 

transitional areas often represent intermediate stages between 

dense forest and degraded landscapes and were mostly 

observed in the central and inland buffer regions. 

The area classified as Bare Soil also demonstrated a 

significant increase, rising from 77.52 km² (1.29%) in 1975 to 

309.30 km² (5.15%) in 2025, an approximate 299.06% gain. 

The observed decrease in Bare Soil area in 2005 is likely due 

to natural sediment stabilization and subsequent partial 

revegetation, leading to the reclassification of these areas as 

Sparse Forest during the classification process. This 

interpretation is supported by the substantial concurrent 

increase in Sparse Forest, indicating possible ecological 

recovery in relatively undisturbed sedimentary zones. This 

change indicates continued deforestation, land conversion for 

aquaculture, and exposure of formerly vegetated surfaces due 

to erosion and salinity-induced dieback (Ghosh et al., 2016; 

Islam & Bhuiyan, 2018). Bare Soil was frequently identified 

near human-modified zones and along reclaimed 

embankments, where vegetation loss is commonly observed. 

Interestingly, Water bodies remained relatively stable in total 

area across the five decades, fluctuating from 1760.14 km² 

(29.31%) in 1975 to 1766.15 km² (29.42%) in 2025. While 

the net change (a 0.34% increase) appears marginal, the 

fluctuation patterns-particularly in 1995 (31.86%) and 2005 

(30.65%)-indicate dynamic processes of tidal encroachment, 

sedimentation, and seasonal water level variation. These 

fluctuations may also be partially influenced by annual 

variation in satellite acquisition timing and hydrological 

regime changes related to upstream flow alterations (Roy et 

al., 2014; Chander et al., 2009). 

 

Table 2. Land Cover Area Change (1975–2025) 

Year Water 

(km²) 

Area 

(%) 

Bare Soil 

(km²) 

Area 

(%) 

Sparse 

Forest 

(km²) 

Area 

(%) 

Dense 

Forest 

(km²) 

Area 

(%) 

1975 1760.14 29.31 77.52 1.29 254.31 4.23 3914.06 65.17 

1988 1729.92 28.79 117.26 1.95 295.36 4.92 3865.54 64.34 

1995 1912.89 31.86 215.03 3.58 193.49 3.22 3681.84 61.33 

2005 1840.07 30.65 147.17 2.45 750.40 12.5 3265.61 54.40 

2015 1763.21 29.37 215.58 3.59 1187.38 19.78 2837.11 47.26 

2025 1766.15 29.42 309.30 5.15 1229.99 20.49 2697.82 44.94 

 

These transformations collectively illustrate critical 

ecosystem degradation trends over five decades. The 

consistent reduction in dense forest, coupled with rising 

sparse forest and bare soil areas, reflects increasing pressure 

on the mangrove ecosystem. These patterns echo findings 

from other regional and global mangrove studies emphasizing 

the link between anthropogenic activities, climatic stress, and 

mangrove transformation (Emch & Peterson, 2006; Giri et al., 

2015; Sunkur et al., 2024; Roy et al., 2025). The results 

underscore the urgency of implementing conservation 

policies, regulating human interventions, and enhancing 

freshwater flow regimes to protect and restore mangrove 

habitats. 

 

3.2 Land Cover Transformation Analysis (1975–2025) 

The land cover transformation dynamics of the Sundarbans 

Mangrove Forest over the fifty-year period from 1975 to 2025 

provide critical insights into how tidal, sedimentary, and 

human-driven processes have reshaped one of the world’s 

most ecologically vital deltaic ecosystems. Based on the 

classified outputs of the supervised Maximum Likelihood 

Classification (MLC), transitions among four key land cover 

classes-Water, Bare Soil, Sparse Forest, and Dense Forest 
were assessed. These transitions, visualized in Figures 4 to 7 

and data are summarized in Table 3, illustrate both 

degradation trends and isolated zones of regeneration. 

As illustrated in Table 3, transformations from Dense Forest 

to Sparse Forest alone constituted over 60% of the total 

changed area, indicating significant canopy degradation and 

structural fragmentation. Dense Forest also experienced 

substantial conversions to Bare Soil (10.79%) and Water 

(6.22%), reinforcing a long-term trend of ecosystem stress. In 

contrast, positive transitions, such as Sparse Forest to Dense 

Forest (4.40%) or Bare Soil to vegetation classes 

(approximately 1%), were relatively minor, highlighting the 

limited scale of natural regeneration or reforestation. These 
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trends suggest that degradation processes, including salinity 

intrusion, erosion, and anthropogenic encroachment, have 

outpaced recovery efforts during the study period. This 

broader context sets the stage for a more detailed spatial 

interpretation in the subsections that follow. 

 

Table 3: Major Land Cover Transitions in the Sundarbans (1975–2025) 

Major Transformation Area in km² % of the total 

changed area 
From To 

Water Bare soil 77.35 4.41 

Sparse forest 65.51 3.74 

Dense forest 49.49 2.82 

Dense forest Water 109.12 6.22 

Bare soil 189.08 10.79 

Sparse forest 1054.37 60.12 

Bare Soil Water 36.41 2.08 

Sparse forest 9.35 0.53 

Dense forest 9.73 0.55 

Sparse forest Water 52.83 3.01 

Bare soil 23.35 1.33 

Dense forest 77.11 4.40 

Total 1753.7 100 

Water Body Transformation  

Water bodies in the Sundarbans are dynamic, heavily influenced by tidal influx, channel morphology, and seasonal 

sedimentation. During the study period, a total of 77.35 km² of water bodies were transformed into Bare Soil, primarily due to 

sediment deposition and lateral accretion processes characteristic of active deltaic regions (Giri et al., 2015). Additionally, 65.51 

km² and 49.49 km² of water transitioned into Sparse Forest and Dense Forest, respectively. Figure 4, shows these transitions 

often occurred along stabilized sediment bars, tidal flats, and near river mouths (Kundu et al., 2020; Bhattacharjee et al., 2021), 

where mangroves naturally colonize newly formed land. These findings align with Kanjin et al. (2024), who also identified 

sediment accretion zones as potential regeneration sites for mangroves in degraded estuarine margins. This ecological succession 

reflects the inherent adaptive capacity of mangrove vegetation in re-establishing on fresh alluvium process well documented in 

deltaic estuarine systems (Kuenzer et al., 2011; Sunkur et al., 2024). However, the spatial extent of such positive transitions was 

relatively minor compared to the overall transformation matrix, indicating limited net gain in vegetation from water bodies. 

 

Figure 4: Transformation of Water Body            Figure 5: Transformation of Bare Soil 

 

Bare Soil Transformation  

The Bare Soil class exhibited both regressive and progressive 

transformations. Notably, 36.41 km² of bare land areas 

reverted to Water, indicative of submergence due to tidal 

encroachment, channel expansion, or erosion of unstable 

sediment deposits. Conversely, 9.35 km² and 9.73 km² 

transitioned into Sparse and Dense Forest, respectively-

evidence of active mangrove regeneration. These changes 

may be attributed to sediment stability, natural revegetation 

processes, or targeted afforestation efforts within conservation 

projects (Negassa et al., 2020). As shown in Figure 5, these 

gains are often observed in the interior zones where sediment 

retention is high and anthropogenic pressure is relatively low. 

Such patterns underscore the role of geomorphological 

suitability and tidal sediment balance in supporting vegetation 

recovery (Roy et al., 2014; Ghosh et al., 2016). Moreover, 

affirm the resilience of mangrove species when favorable 



Md. Imran Hossain et al., 

 

10  

hydrological and salinity conditions are restored (Joshi et al., 2016). 

   

Figure 6: Transformation of Dense Forest                          Figure 7: Transformation of Sparse Forest  

Dense Forest Transformation 

Among all categories, Dense Forest exhibited the most 

alarming rates of transformation. Approximately 109.12 km² 

of dense forest was lost to Water, reflecting the growing 

influence of estuarine erosion, relative sea-level rise, and tidal 

scouring, particularly along major distributaries and the 

southern coastal margins (Dasgupta et al., 2015; Bomer et al., 

2020). An additional 189.08 km² was converted to Bare Soil, 

a likely consequence of deforestation for aquaculture 

expansion, infrastructural encroachment, or clear-cutting, 

often exacerbated by salinity intrusion and soil degradation 

(Islam & Bhuiyan, 2018). The most extensive transformation, 

however, involved 1054.37 km² of dense Forest converting 

into Sparse Forest, indicating progressive thinning of canopy 

structure, fragmentation of tree stands, and overall ecological 

decline. This conversion often occurs in salinity-prone zones 

and along forest edges, suggesting declining forest health due 

to prolonged exposure to stressors (Patra, 2024; Uddin et al., 

2014). Figure 6 illustrates these spatial transformations 

concentrated around areas of high anthropogenic interaction, 

including embankment breaches and shrimp culture zones. 

Sparse Forest Transformation  

The Sparse Forest class reflects a transitional state-both 

vulnerable to degradation and capable of recovery under 

favorable conditions. A total of 52.83 km² of Sparse Forest 

reverted to Water, which may be associated with tidal 

intrusion, erosion along forest edges, and breaching of 

embankments, particularly in low-elevation, cyclone-exposed 

areas (Potapov et al., 2012). On a more positive note, 77.11 

km² of Sparse Forest transitioned into Dense Forest, 

demonstrating the potential for structural regeneration when 

ecological stress is mitigated. However, 23.35 km² of Sparse 

Forest transitioned into Bare Soil, signifying continued 

degradation, potentially due to salt stress-induced dieback or 

small-scale human clearings. As seen in Figure 7, these 

transitions are spatially dispersed, with regeneration mostly 

occurring in the northern and central forest regions, while 

degradation hotspots align with human proximity and reduced 

freshwater inflow (Giri et al., 2011; Chander et al., 2009). 

Collectively, these spatial transitions underscore the 

ecological vulnerability of the Sundarbans. Dense Forest 

retreat and Sparse Forest expansion reflect long-term 

structural degradation and landscape fragmentation. The 

transformation maps (Figures 3–6) identify spatial hotspots-

particularly along tidal creeks, deltaic edges, and human-

influenced zones-where intervention is urgently needed. 

These findings align with global assessments of mangrove 

loss and emphasize the importance of sediment dynamics, 

hydrological regime shifts, and anthropogenic drivers (Roy et 

al., 2014; Vermote et al., 2016). Mapping such 

transformations provides empirical insight to guide ecosystem 

restoration, zonal conservation, and climate adaptation 

strategies tailored to this globally significant mangrove forest. 

3.3 Spatial Dynamics of Land Cover Gains and Losses 

(1975–2025) 
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To complement the transformation analysis presented earlier, 

this section quantitatively explores the spatial dynamics of 

land cover gains and losses across four major land cover 

classes-Water, Bare Soil, Sparse Forest, and Dense Forest-

between 1975 and 2025 in the Bangladeshi Sundarbans. This 

analysis provides additional insight into the net structural 

changes and ecological balance shifts over the five-decade 

period. The comparative figures and metrics in Figure 6, 7 

and 8 reflect the relative resilience and vulnerability of each 

land cover class.  

Dense Forest exhibited the most pronounced loss, accounting 

for a staggering 1352.57 km² or 77.13% of the total 

transformed area. This decline is consistent with prior spatial 

assessments and highlights intense anthropogenic 

deforestation, hydrological stress, and salinity intrusion, 

especially in southern and peripheral zones. Despite this 

considerable loss, only 136.33 km² (7.77%) of Dense Forest 

was gained, indicating poor rates of regeneration and canopy 

closure over time. 

In contrast, Sparse Forest demonstrated a net increase in 

extent. It gained approximately 1129.23 km² (64.39%)-the 

largest among all classes-while losing only 153.29 km² 

(8.74%). This pattern signifies a widespread transformation 

from Dense to Sparse Forest, indicative of forest thinning and 

structural degradation. However, it also highlights some 

ecological resilience, where previously degraded zones 

retained partial vegetation cover. 

Bare Soil gained 289.78 km² (16.52%), often from cleared 

forest zones and receding waters, while it lost only 55.49 km² 

(3.16%) to re-vegetation or inundation. The net increase in 

Bare Soil areas points to grow land degradation and exposure 

of previously vegetated surfaces, especially along inland and 

estuarine fringes. 

Water bodies displayed relative balance, with a gain of 198.36 

km² (11.31%) and a nearly equivalent loss of 192.35 km² 

(10.97%). These changes align with tidal dynamics, 

sedimentation, and seasonal riverbank shifts. The marginal 

net gain in water area affirms the tidal estuary's hydro-

geomorphic volatility. 

This land cover gain-loss matrix, serves as a vital spatial 

diagnostic tool to understand land degradation patterns and 

recovery potentials. The corresponding Figure 8 provides a 

visual comparison, emphasizing the disproportionate losses in 

Dense Forest and the significant rise in Sparse Forest and 

Bare Soil. 

 

 

Figure 8. Comparative Gain and Loss of Land Cover Classes in the Bangladeshi Sundarbans (1975–2025) 
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These results collectively reflect the asymmetric patterns of 

degradation and regeneration, offering a foundational dataset 

for ecosystem management strategies and prioritization of 

restoration zones. 

3.4 Discussion 

The results of the last five-decade analysis reveal significant 

transformations in the land cover of the Sundarbans 

Mangrove Forest, underscoring the intensifying ecological 

vulnerability of this critical coastal ecosystem. The most 

striking finding is the extensive degradation of Dense Forest 

cover, which declined by approximately 1216.24 km² 

(31.07%) between 1975 and 2025. This loss corresponds to 

the largest proportion of total land cover transformation, 

where more than 1352.57 km² of Dense Forest was converted-

largely into Sparse Forest (1054.37 km²), and to a lesser 

extent into Bare Soil (189.08 km²) and Water (109.12 km²). 

These transitions point directly to extensive deforestation, 

canopy thinning, and habitat fragmentation, largely driven by 

escalating anthropogenic activities including unregulated 

aquaculture, illegal logging, embankment breaches, and 

saltwater intrusion (Giri et al., 2015; Islam & Bhuiyan, 2018). 

The expansion of Sparse Forest, by more than 975 km² over 

the study period, represents a mixed ecological signal. While 

the net increase suggests partial vegetation persistence and 

regeneration in certain zones, particularly where afforestation 

and sediment stabilization occurred, the dominance of Dense-

to-Sparse Forest transitions (over 60% of total 

transformations) highlights structural degradation and the 

weakening of mangrove ecosystem integrity. This trend 

reflects environmental stress due to hydrological alteration, 

salinity fluctuation, and storm impacts (Uddin et al., 2014; 

Sunkur et al., 2024). Consistent with this interpretation, 

Kanjin et al. (2024) found that frequent cyclone events and 

poor soil moisture in recent years were key contributors to 

declining mangrove health in large tracts of the Sundarbans. 

Similarly, the 299.06% increase in Bare Soil-expanding from 

77.52 km² in 1975 to 309.30 km² in 2025-signals growing 

land degradation and failed reforestation in sediment-exposed 

and anthropogenically altered zones. These regions, often 

adjacent to reclaimed areas and aquaculture plots, show signs 

of prolonged salinization and erosion, especially where 

vegetation fails to re-establish (Ghosh et al., 2016; Roy et al., 

2014). On the positive side, limited gains from Bare Soil to 

vegetated categories (Sparse and Dense Forest) suggest 

ecological resilience in selected micro-environments where 

tidal flow and sediment supply remain intact. 

Water bodies exhibited relatively minor net change (a gain of 

just 6 km² over five decades), despite dynamic local-scale 

transitions. Approximately 192.35 km² of water area was lost 

to terrestrial categories, mainly Bare Soil and vegetation, 

while 198.36 km² was gained. These transitions reflect the 

fluid hydromorphology of the Sundarbans, shaped by tidal 

inflow, sediment accretion, riverbank migration, and possibly 

upstream water management interventions such as the 

Farakka Barrage (Roy et al., 2014; Patra, 2024). Although the 

areal extent appears stable, this study’s scope did not include 

bathymetric change, which remains a critical knowledge gap 

for assessing tidal basin health and future flood resilience. 

Recent research, however, has shown that mangrove 

landscapes in the Sundarbans are actively adjusting their 

surface elevation through sediment accretion, helping them 

adapt to human-altered tidal regimes and local sea-level rise 

(Bomer et al., 2020). 

Spatial analysis reveals clear patterns of degradation and 

regeneration. Dense Forest loss was prominent near southern 

tidal interfaces and river mouths, while Sparse Forest gains 

were concentrated in central and northern buffer zones. 

Figures 3–6 and the gain-loss matrix in Figure 6, 7 and 8 

affirm these trends. Notably, gains in Sparse Forest (1129.23 

km²) significantly outpaced its losses (153.29 km²), 

underscoring a widespread shift toward a lower-structure 

forest condition, which, although ecologically weaker, still 

offers critical services like erosion control and carbon storage. 

From a methodological standpoint, the use of Maximum 

Likelihood Classification (MLC) proved effective in 

capturing complex transitions across time and space. A 

similar approach was adopted by Chowdhury and Hafsa 

(2022), who applied supervised MLC on multi-temporal 

Landsat data to assess long-term land cover dynamics in the 

Bangladeshi Sundarbans with high classification accuracy and 

robust transition analysis. MLC allowed categorical 

differentiation that was both statistically robust and 

ecologically meaningful, outperforming index-based 

classification approaches such as NDVI for multitemporal 

landscape mapping in mangrove ecosystems (Kanjin et al., 

2024; Ghosh et al., 2016; Lu & Weng, 2007).  

Management implications of these findings are substantial. 

The Sundarbans resilience depends on implementing 

integrated land-use strategies that combine remote sensing 

monitoring with ground-based afforestation, salinity 

management, and freshwater regime restoration. High-risk 

transformation zones identified in this study, especially 

southern fringes and dense-to-sparse forest corridors-should 

be prioritized for conservation investment. In addition, 

promoting community-managed buffer zones and sustainable 

aquaculture practices can mitigate anthropogenic pressure and 

enhance long-term ecosystem stability (Uddin et al., 2014; 

Patra, 2024). 

In summary, this study observed extensive forest degradation, 

limited regeneration, and shifting ecological baselines in the 

observed Sundarbans Mangrove Forest from 1975 to 2025. 

The spatial and categorical trends presented here serve as a 

foundation for evidence-based policy and restoration 

initiatives aimed at protecting this globally critical and 

climatically vulnerable landscape. 
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4. Conclusion 

This study presents a comprehensive, five-decade assessment 

of land cover dynamics in the Bangladeshi Sundarbans 

Mangrove Forest, utilizing supervised Maximum Likelihood 

Classification (MLC) on atmospherically corrected Landsat 

imagery. By classifying and analyzing changes in four 

ecologically significant land cover types-Water, Bare Soil, 

Sparse Forest, and Dense Forest-this research reveals long-

term structural degradation and ecological stress across the 

mangrove ecosystem. Transformation matrices and spatial 

gain-loss assessments indicate that Dense Forest areas have 

undergone substantial loss, largely due to salinity intrusion, 

reduced freshwater flow, and anthropogenic pressures. While 

increases in Sparse Forest and Bare Soil suggest widespread 

vegetation thinning and land exposure, these transitions 

reflect degradation rather than true ecological recovery. The 

apparent stability in surface water extent masks deeper 

hydrological transformations, underscoring the need for 

integrated studies on water depth, sedimentation, and quality. 

This study contributes novel insight by combining multi-

decadal categorical classification with spatial transition 

mapping, offering high-resolution evidence for long-term 

ecosystem vulnerability. To ensure sustainability, ecosystem-

based management strategies-such as afforestation, salinity 

monitoring, freshwater regime restoration, and land-use 

regulation-should be prioritized in ecologically sensitive 

transition zones. Moving forward, future studies should 

consider integrating bathymetric data, seasonal spectral 

indices, and climate model projections to enhance 

understanding of tidal dynamics and resilience pathways. 

Overall, this research provides a strong foundation for policy 

planning, restoration prioritization, and adaptive conservation 

of one of the world’s most vulnerable coastal landscapes. 
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