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The Sundarbans Mangrove Forest in Bangladesh, the world’s largest tidal mangrove
ecosystem, has undergone substantial ecological change over the past five decades.
This study investigates land cover transformation from 1975 to 2025 using
atmospherically corrected Landsat imagery and supervised Maximum Likelihood
Classification (MLC). The landscape was categorized into four classes-Dense
Forest, Sparse Forest, Bare Soil, and Water-across six periods to identify long-term
spatial patterns and ecological vulnerabilities. Results reveal a 31.07% reduction in
Dense Forest area (from 3914.06 km? to 2697.82 km?), accompanied by a 383.67%
increase in Sparse Forest and a nearly 300% rise in Bare Soil. These trends reflect
forest fragmentation, degradation, and progressive thinning of canopy cover, largely
driven by upstream hydrological alterations, salinity intrusion, and increasing
anthropogenic pressure. While the Water class showed minimal net change in
surface extent, localized gains and losses aligned with tidal influence and
sedimentation cycles. Transition matrices and gain-loss analyses identified southern
estuarine margins and forest edges as degradation hotspots, while northern zones
exhibited localized signs of regeneration. The classification results achieved high
accuracy levels (84% to 92.3%) with Kappa values exceeding 0.80, confirming
methodological reliability. This study emphasizes the need for integrated
conservation, restoration planning, and improved freshwater governance to mitigate
further degradation. The findings provide a scientific basis for adaptive ecosystem
management in one of the world’s most climate-sensitive coastal environments.

1. Introduction

The Sundarbans Mangrove Forest, located at the confluence essential role in Dbiodiversity conservation, carbon

of the Ganges, Brahmaputra, and Meghna rivers, is the largest
continuous mangrove forest in the world, stretching across
approximately 10,000 square kilometers in Bangladesh and
India (Giri et al, 2011). This unique ecosystem plays an
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sequestration, storm protection, and supporting the livelihoods
of millions of people. The Sundarbans provide critical habitat
for iconic and endangered species including the Royal Bengal
Tiger (Panthera tigris tigris), estuarine crocodiles
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(Crocodylus porosus), and the Irrawaddy dolphin (Orcaella
brevirostris) (Uddin et al., 2014; Ghosh et al., 2016).

Despite its ecological and socio-economic importance, the
Sundarbans are facing unprecedented degradation due to both
anthropogenic and climatic stressors. Population pressure,
illegal logging, shrimp farming, and infrastructural
development continue to encroach on mangrove habitats.
Simultaneously, climate change-induced factors such as sea-
level rise, salinity intrusion, increased frequency of cyclones,
and coastal erosion further exacerbate the forest's
vulnerability (Dasgupta et al, 2015; Patra, 2024). In
particular, altered river discharge caused by upstream water
management practices, including the Farakka Barrage, has
reduced the availability of freshwater, enhanced salinization,
and shifted vegetation composition (Uddin et al., 2014;
Bomer et al., 2020). Similar patterns of reduced freshwater
flow and increasing salinity stress have also been identified in
recent studies analyzing decadal mangrove change,
highlighting regional-scale hydrological and anthropogenic
impacts (Emch & Peterson, 2006; Chowdhury & Hafsa, 2022;
Kanjin et al., 2024). However, while previous studies have
advanced understanding of vegetation health and spectral
variability, they have not fully explored multi-decadal,
statistically grounded land cover classification across
ecologically distinct categories.

Given these dynamics, there is an urgent need for regular,
long-term monitoring of land cover dynamics in the
Sundarbans to inform conservation and policy -efforts
(Bhattacharjee et al, 2021; Kundu et al, 2020). Remote
sensing has emerged as an indispensable tool for such
monitoring due to its ability to provide synoptic, repeatable
observations across large and inaccessible landscapes
(Kuenzer et al., 2011; Negassa et al., 2020). Among various
remote sensing techniques, supervised classification methods
like the Maximum Likelihood Classification (MLC) have
proven effective for producing reliable land cover maps,
particularly in heterogeneous and fragmented ecosystems like
mangrove forests (Al-doski et al., 2013; Jensen, 2015).

While studies using vegetation indices such as the Normalized
Difference Vegetation Index (NDVI) have been helpful in
tracking vegetation health (Bhattacharjee et al., 2021), they
do not provide explicit land cover category delineations.
NDVI is limited to spectral indicators of greenness and cannot
differentiate between ecologically significant classes like
sparse vs. dense forest or soil vs. degraded vegetation
(Tucker, 1979; Huete et al, 2002). In contrast, MLC
facilitates a more detailed and accurate classification of
multiple land cover types by assigning pixels based on
statistical probabilities and training samples.

Despite the potential of MLC for mapping complex
vegetation structures, relatively few studies have conducted
multi-decadal classification of the Sundarbans using this
method. MLC offers a statistically robust approach especially
suited for ecosystems with overlapping spectral characteristics

like mangrove forests, making it a suitable choice for this
long-term analysis. One of the earlier efforts to examine
Sundarbans mangrove cover change using Landsat imagery
applied multiple classification methods including MLC,
NDVI differencing, and subpixel classification to assess forest
dynamics between 1989 and 2000 (Emch & Peterson, 2006).
Existing literature either focuses on short time spans or lacks
robust accuracy assessments and spatial change detection
(Sunkur et al., 2024). Furthermore, little emphasis has been
placed on identifying transition hotspots - areas where rapid
or frequent class change occurs - which are crucial for
prioritizing restoration or protective interventions (Roy et al.,
2025).

This study seeks to bridge these gaps by conducting a
comprehensive, multi-decadal land cover classification and
transformation analysis of the Sundarbans from 1975 to 2025.
Using atmospherically corrected Landsat data and supervised
MLC, we categorized the landscape into four classes: Water,
Bare Soil, Sparse Forest, and Dense Forest. We also
performed spatiotemporal analyses to map transition hotspots
and assess ecological vulnerability. This approach
complements and extends previous efforts such as Kanjin et
al. (2024), who used NDVI and PCA to detect mangrove
degradation patterns over three decades, though their
classification lacked categorical delineation between forest
conditions.

The specific objectives of this research are to: Conduct a
long-term, quantitative analysis of land cover changes from
1975 to 2025 in the Sundarbans Mangrove Forest using
supervised Maximum Likelihood Classification (MLC).
Quantify major land cover transitions and identify ecological
degradation zones in the Sundarbans between 1975 and 2025.
Provide long-term, evidence-based insights for conservation
and restoration planning.

2. Materials and Methods
2.1 Study Area

In this study, the Bangladeshi part of the Sundarbans has been
selected as the primary focus area (Fig. 1). It lies between
21.5° to 22.5° N latitude and 88.0° to 89.5° E longitude,
covering the southwestern coastal districts of Satkhira,
Khulna, and Bagerhat. The Sundarbans Mangrove Forest,
located at the confluence of the Ganges, Brahmaputra, and
Meghna River systems, forms the largest contiguous tidal
halophytic mangrove forest in the world. Spanning
approximately 10,000 km? across Bangladesh and India, it
plays a crucial role in maintaining the ecological and socio-
economic stability of the region. The Bangladeshi portion of
the Sundarbans alone covers around 6,017 km? and represents
about 60% of the total forest area (Ghosh et al., 2016; Roy et
al., 2025).
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Figure 1: Study Area Map

Climatically, the Sundarbans experience a humid tropical
monsoon environment with three distinct seasons: summer
(March-May), monsoon (June—September), and winter
(October—February). The region receives annual precipitation
ranging from 1,500 mm to 2,500 mm and has a mean
temperature between 20°C in winter and 34°C in summer
(Dasgupta et al, 2015). These climate characteristics
influence seasonal water levels and vegetation patterns.

Hydrologically, the forest is shaped by semi-diurnal tides
from the Bay of Bengal, resulting in regular inundation and
exposure. These tides form estuarine systems, intertidal
mudflats, tidal creeks, and brackish water channels, helping
the forest buffer storm surges and support sediment and
nutrient cycling.

Ecologically, the forest hosts salt-tolerant mangrove species
such as Heritiera fomes (Sundri), Excoecaria agallocha
(Gewa), and Sonneratia apetala (Keora), which stabilize the
shoreline and contribute to ecological services like carbon

sequestration and water purification (Patra, 2024; Uddin et
al., 2014).

The Sundarbans also shelters globally threatened species such
as the Royal Bengal Tiger, estuarine crocodiles, and
Irrawaddy dolphins, and supports local livelihoods through
fisheries, honey fuelwood, and
medicine.

collection, traditional

2.2 Remote Sensing Data Acquisition

To comprehensively monitor land cover transformations
within the Sundarbans Mangrove Forest over a five-decade
period (1975-2025), multi-temporal satellite imagery from
the Landsat program was employed. The Landsat program,
jointly managed by NASA and the United States Geological
Survey (USGS), provides one of the longest continuous
records of Earth observation and is considered highly suitable
for temporal change analysis due to its moderate spatial
resolution, multispectral capabilities, and consistent revisit
intervals. All imagery was accessed and downloaded via the
USGS Earth Explorer platform, which offers open-access
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satellite datasets suitable for

monitoring.

long-term environmental

For this study, data were retrieved from four different Landsat
sensors- Landsat-2 Multispectral Scanner System (MSS),
Landsat-5 Thematic Mapper (TM), Landsat-8 Operational
Land Imager (OLI), and Landsat-9 OLI-2. The selection of
these sensors was based on their availability for the

corresponding time periods and their compatibility in terms of
spatial and spectral resolutions necessary for land cover
classification. Specifically, images were selected for the years
1975, 1988, 1995, 2005, 2015, and 2025 to provide a decadal
interval framework, capturing long-term land surface
dynamics. The detailed metadata, including sensor type,
path/row identifiers under the Worldwide Reference System
(WRS), and acquisition dates, are summarized in Table 1.

Table 1. Landsat Imagery Details

Year | Sensor

Path/Row (WRS)

Acquisition Date

1975 | Landsat-2 MSS

147/045, 148/044 (WRS-1)

27 & 28 March

1988 | Landsat-5 TM

137/045, 138/045 (WRS-2)

19 Feb & 25 Jan

1995 | Landsat-5 TM | 137/045, 138/045 (WRS-2) | 21 & 28 Jan
2005 | Landsat-5 TM | 137/045, 138/045 (WRS-2) | 16 & 07 Jan
2015 | Landsat-8 OLI | 137/045, 138/045 (WRS-2) | 28 Jan & 04 Feb
2025 | Landsat-9 OLI | 137/045, 138/045 (WRS-2) | 15 & 22 Jan

To minimize seasonal bias and ensure spectral consistency,
only dry season images (January to March) with less than
10% cloud cover were used (Bhattacharjee ef al., 2021). This
approach improves reflectance quality by avoiding monsoon-
related distortions.

While 1985 would have been ideal for maintaining temporal
symmetry, cloud-free imagery for that year was unavailable.
Following similar studies (Ghosh et al., 2016; Chowdhury &
Hafsa, 2022), 1988 was seclected as the closest viable
substitute.

Given the extensive spatial footprint of the Sundarbans,
particularly under the WRS-1 system used for Landsat MSS
data, multiple adjacent scenes were required to achieve full

spatial coverage. As a result, scene mosaicking was carried
out for the years where a single path/row combination was
insufficient-most notably for the 1975 MSS dataset. This
ensured that the entire Bangladeshi portion of the Sundarbans
was consistently represented across all temporal snapshots,
thereby enhancing the reliability of comparative land cover
analysis.

A detailed visual representation of the entire methodological
framework, including preprocessing, classification, and post-
classification analyses, is illustrated in Figure 2. This
workflow chart serves as a step-by-step guide to the remote
sensing and GIS-based approach employed in this study for
land cover change detection in the Sundarbans from 1975 to
2025.
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Figure 2: Methodological Workflow of Remote Sensing-Based Land Cover Classification in the Sundarbans (1975—
2025).

2.3 Image Preprocessing

Accurate land cover classification in multi-temporal studies
heavily depends on comprehensive image preprocessing to
ensure consistency and comparability across datasets acquired
from different sensors over several decades. Therefore, a
systematic preprocessing protocol was adopted to address
variations in radiometric response, geometric alignment,
sensor-specific artifacts, and temporal differences in data
acquisition.

Radiometric and Atmospheric Correction

The Landsat-2 MSS imagery from 1975, lacking Level-2
surface reflectance products, was calibrated by converting
Digital Numbers (DNs) to Top-of-Atmosphere (TOA)
reflectance using sensor-specific coefficients and solar angle
adjustments (Chander et al., 2009; Tucker, 1979). For
Landsat-5 TM, Landsat-8 OLI, and Landsat-9 OLI-2,
Collection 2 Level-2 surface reflectance products were used.
These are atmospherically corrected using the LaSRC
algorithm and 6S radiative transfer model, ensuring spectral
consistency (Vermote et al., 2016; Roy et al., 2014).

Geometric Correction and Reprojection

To align all images spatially for overlay and analysis,

geometric correction and reprojection were performed. All
datasets were reprojected to the WGS 1984 UTM Zone 46N
coordinate system using ArcGIS 10.8. This step ensured
consistent pixel alignment and spatial accuracy, allowing for
seamless cross-year comparisons and precise spatial analyses
of change patterns (Jensen, 2015).

Destriping and Resampling (MSS Data)

Landsat-2 MSS images exhibited striping artifacts due to
sensor limitations. These were mitigated using a Fourier
transform-based destriping filter in ENVI 5.3. The original
60-meter resolution was resampled to 30 meters using bilinear
interpolation  for compatibility ~with later datasets
(Bhattacharjee ef al., 2021. This resampling was essential for
maintaining consistency across spatial datasets and ensuring
compatibility during classification and transformation
analysis (Islam & Bhuiyan, 2018).

Image Mosaicking and Layer Stacking

For years requiring multiple scenes (especially MSS data),
adjacent path/row images were mosaicked using ENVI 5.3.
Bands were then stacked to generate multiband composites,
which were clipped to the Sundarbans study area using a
predefined boundary shapefile (Patra, 2024).
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2.4 Maximum Likelihood Classification (MLC)

To classify the land cover types within the Sundarbans
Mangrove Forest across the six reference years (1975, 1988,
1995, 2005, 2015, and 2025), a supervised classification
technique known as the Maximum Likelihood Classifier
(MLC) was employed. MLC is widely recognized for its
effectiveness in classifying complex and heterogeneous
landscapes, particularly in mangrove ecosystems where
spectral overlap between vegetation classes is common (Lu &
Weng, 2007; Ghosh et al., 2016; Kundu et al., 2020; Negassa
et al, 2020). Among various available -classification
algorithms, MLC was chosen for its robustness in pixel-based
statistical modeling and its proven suitability in previous
multi-temporal land cover studies in similar environments.
Compared to object-based or machine learning classifiers like
Random Forest or Support Vector Machines, MLC offers a
balance between classification accuracy and computational
efficiency, especially when high-resolution training samples
and consistent spectral bands are available.

The algorithm assumes a normal (Gaussian) distribution of
reflectance values for each land cover class and assigns each
pixel to the class with the highest probability. Four distinct
land cover classes were defined based on ecological relevance
and visual interpretability: Water, Bare Soil, Sparse Forest,
and Dense Forest. These categories represent both natural and
anthropogenically altered landscapes in the Sundarbans.
Training samples for each class were carefully selected for all
reference years using a combination of field knowledge,
visual inspection, and high-resolution Google Earth Pro
imagery. Particular attention was given to ensuring temporal
consistency in training data to allow for valid comparisons
across decades.

The classification procedure was carried out using ArcGIS
10.8, and the raw output was further refined using a 3x3
majority filter. This smoothing technique helps remove
isolated misclassified pixels, commonly referred to as "salt-
and-pepper noise," thereby improving the spatial coherence of
classified patches.

The final classified maps for all six years serve as the
foundation for land cover change detection and spatial
transformation analysis. These maps are presented in the
Results section (Figures 3-5) to demonstrate the temporal
dynamics and spatial distribution of each land cover category
over the five-decade study period.

Note: The detailed visual outputs of the classification process,
including comparative MLC maps for 1975 to 2025, are
provided in Section 3 (Results and Discussion).

2.5 Land Cover Transformation Analysis

Land cover change detection was performed using the
classified maps through a series of geospatial operations in
ArcGIS 10.8. Classified rasters were first converted to vector
format, and change zones between consecutive time periods
were identified using intersect and dissolve operations.
Polygon geometry was then calculated to determine area
values (in square kilometers), and the resulting attribute tables
were exported to Microsoft Excel for temporal comparison
and transition matrix generation.

2.6 Accuracy Assessment

To evaluate the reliability of the classified land cover maps
across the six temporal datasets (1975, 1988, 1995, 2005,
2015, and 2025), a rigorous accuracy assessment protocol was
followed. A stratified random sampling technique was
employed, with approximately 100 reference points generated
per year to ensure balanced coverage of all land cover classes.

For the years 1988 to 2025, validation of these points was
conducted using high-resolution historical imagery from
Google Earth Pro (Bhattacharjee et al., 2021), which allowed
precise visual interpretation and cross-verification with
classified outputs. In contrast, the 1975 classification lacked
access to such high-resolution temporal data; therefore,
accuracy validation for this year was based on expert
interpretation of the Landsat MSS imagery and corroboration
with historical land use maps and ancillary data sources
(Foody, 2002).

The following key accuracy metrics were computed:

Overall Accuracy (%)
_ (Total Number of Correctly Classified PiXGlS) % 100

Total Number of Reference Pixels

NYxii—Yyxi+x+i
N2 —¥xi+x+1i

Kappa =

Where:

e xii = Number of correctly classified pixels in the ith
class (diagonal elements)

e  xi= Row totals (classified totals)
e x +i=Column totals (reference totals)
e N =Total number of reference pixels
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the assessment results
demonstrated consistently strong accuracy levels. Overall

Across all classification years,

Accuracy (OA) and Kappa Coefficient were calculated for
each classification year. OA ranged from 84.0% (1975) to
92.3% (2015), and Kappa values consistently exceeded 0.80,
with the highest (0.91) in 2015. The relatively lower accuracy
in 1975 reflects limitations of coarser-resolution MSS data.
Dense Forest consistently recorded the highest Producer’s and
User’s Accuracy, while Sparse Forest and Bare Soil
occasionally showed lower values due to intermediate spectral
responses. These findings confirm the robustness of the MLC
method in mapping long-term land cover change in the
Sundarbans.

3. Results and Discussion

3.1 Results

The supervised Maximum Likelihood Classification (MLC)
applied across six distinct periods- 1975, 1988, 1995, 2005,
2015, and 2025 revealed clear and compelling land cover
transitions within the Sundarbans Mangrove Forest.
Leveraging multi-temporal Landsat datasets and advanced
classification techniques, four primary land cover categories
were delineated: Water, Bare Soil, Sparse Forest, and Dense
Forest. The classified land cover maps across these years are
presented in Figure 3, while the quantified land cover areas
and their corresponding percentages are summarized in Table
2.

0 15 30

MLC-Based Land Cover Maps of the Sundarbans (1975-2025)

Legend

Bare Soil
B Dense forest
Sparse forest

B wWater

60 90

120
Kilometers

Figure 3: MLC-based Land Cover Maps of the Sundarbans (1975-2025)

A notable and continuous decline in Dense Forest cover was
observed over the five-decade span. In 1975, Dense Forest
covered approximately 3914.06 km?, accounting for 65.17%
of the study area. By 2025, this figure had diminished to
2697.82 km? (44.94%), reflecting a net loss of 1216.24 km?*-
equivalent to a 31.07% reduction. The classified imagery
clearly demonstrates a substantial decline in Dense Forest
cover, especially in core zones, which corresponds with areas
known to be affected by salinity intrusion, reduced freshwater
inflow, and increasing anthropogenic pressure such as

settlement expansion and resource extraction (Giri et al.,
2015; Patra, 2024). Kanjin et al. (2024) similarly observed a
declining vegetation trend using NDVI analyses, particularly
in the southern Sundarbans, reinforcing the degradation
patterns  presented here. Spatially, this decline was
concentrated along the southern and southwestern tidal fronts,
where erosion and saline inundation are prevalent.

In contrast, Sparse Forest areas increased markedly,
expanding from 254.31 km? (4.23%) in 1975 to 1229.99 km?
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(20.49%) in 2025. This 383.67% increase signifies
widespread forest thinning, which may reflect not only
ecological stressors like cyclonic damage and altered tidal
flow but also partial regeneration in previously degraded
zones (Dasgupta et al, 2015; Uddin et al., 2014). These
transitional areas often represent intermediate stages between
dense forest and degraded landscapes and were mostly
observed in the central and inland buffer regions.

The area classified as Bare Soil also demonstrated a
significant increase, rising from 77.52 km? (1.29%) in 1975 to
309.30 km? (5.15%) in 2025, an approximate 299.06% gain.
The observed decrease in Bare Soil area in 2005 is likely due
to natural sediment stabilization and subsequent partial
revegetation, leading to the reclassification of these areas as
Sparse Forest during the classification process. This
interpretation is supported by the substantial concurrent
increase in Sparse Forest, indicating possible ecological
recovery in relatively undisturbed sedimentary zones. This
change indicates continued deforestation, land conversion for

aquaculture, and exposure of formerly vegetated surfaces due
to erosion and salinity-induced dieback (Ghosh et al., 2016;
Islam & Bhuiyan, 2018). Bare Soil was frequently identified
near human-modified zones and along reclaimed
embankments, where vegetation loss is commonly observed.

Interestingly, Water bodies remained relatively stable in total
area across the five decades, fluctuating from 1760.14 km?
(29.31%) in 1975 to 1766.15 km? (29.42%) in 2025. While
the net change (a 0.34% increase) appears marginal, the
fluctuation patterns-particularly in 1995 (31.86%) and 2005
(30.65%)-indicate dynamic processes of tidal encroachment,
sedimentation, and seasonal water level variation. These
fluctuations may also be partially influenced by annual
variation in satellite acquisition timing and hydrological
regime changes related to upstream flow alterations (Roy et
al., 2014; Chander et al., 2009).

Table 2. Land Cover Area Change (1975-2025)

Year Water Area Bare Soil | Area Sparse Area Dense Area

(km?) (%) (km?) (%) Forest (%) Forest (%)

(km?) (km?)
1975 1760.14 29.31 77.52 1.29 25431 423 3914.06 65.17
1988 1729.92 28.79 117.26 1.95 295.36 4.92 3865.54 64.34
1995 1912.89 31.86 215.03 3.58 193.49 3.22 3681.84 61.33
2005 1840.07 30.65 147.17 245 750.40 12.5 3265.61 54.40
2015 1763.21 29.37 215.58 3.59 1187.38 19.78 2837.11 47.26
2025 1766.15 29.42 309.30 5.15 1229.99 20.49 2697.82 44.94
These transformations collectively illustrate critical The land cover transformation dynamics of the Sundarbans

ecosystem degradation trends over five decades. The
consistent reduction in dense forest, coupled with rising
sparse forest and bare soil areas, reflects increasing pressure
on the mangrove ecosystem. These patterns echo findings
from other regional and global mangrove studies emphasizing
the link between anthropogenic activities, climatic stress, and
mangrove transformation (Emch & Peterson, 2006; Giri ef al.,
2015; Sunkur et al., 2024; Roy et al., 2025). The results
underscore the urgency of implementing conservation
policies, regulating human interventions, and enhancing
freshwater flow regimes to protect and restore mangrove
habitats.

3.2 Land Cover Transformation Analysis (1975-2025)

Mangrove Forest over the fifty-year period from 1975 to 2025
provide critical insights into how tidal, sedimentary, and
human-driven processes have reshaped one of the world’s
most ecologically vital deltaic ecosystems. Based on the
classified outputs of the supervised Maximum Likelihood
Classification (MLC), transitions among four key land cover
classes-Water, Bare Soil, Sparse Forest, and Dense Forest
were assessed. These transitions, visualized in Figures 4 to 7
and data are summarized in Table 3, illustrate both
degradation trends and isolated zones of regeneration.

As illustrated in Table 3, transformations from Dense Forest
to Sparse Forest alone constituted over 60% of the total
changed area, indicating significant canopy degradation and
structural fragmentation. Dense Forest also experienced
substantial conversions to Bare Soil (10.79%) and Water
(6.22%), reinforcing a long-term trend of ecosystem stress. In
contrast, positive transitions, such as Sparse Forest to Dense
Forest (4.40%) or Bare Soil to vegetation classes
(approximately 1%), were relatively minor, highlighting the
limited scale of natural regeneration or reforestation. These
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trends suggest that degradation processes, including salinity
intrusion, erosion, and anthropogenic encroachment, have
outpaced recovery efforts during the study period. This

broader context sets the stage for a more detailed spatial
interpretation in the subsections that follow.

Table 3: Major Land Cover Transitions in the Sundarbans (1975-2025)

Major Transformation Area in km? % of the total
From To changed area
Water Bare soil 77.35 4.41
Sparse forest 65.51 3.74
Dense forest 49.49 2.82
Dense forest Water 109.12 6.22
Bare soil 189.08 10.79
Sparse forest 1054.37 60.12
Bare Soil Water 36.41 2.08
Sparse forest 9.35 0.53
Dense forest 9.73 0.55
Sparse forest Water 52.83 3.01
Bare soil 23.35 1.33
Dense forest 77.11 4.40
Total 1753.7 100

Water Body Transformation

Water bodies in the Sundarbans are dynamic, heavily influenced by tidal influx, channel morphology, and seasonal
sedimentation. During the study period, a total of 77.35 km? of water bodies were transformed into Bare Soil, primarily due to
sediment deposition and lateral accretion processes characteristic of active deltaic regions (Giri et al., 2015). Additionally, 65.51
km? and 49.49 km? of water transitioned into Sparse Forest and Dense Forest, respectively. Figure 4, shows these transitions
often occurred along stabilized sediment bars, tidal flats, and near river mouths (Kundu et al., 2020; Bhattacharjee et al., 2021),
where mangroves naturally colonize newly formed land. These findings align with Kanjin et al. (2024), who also identified
sediment accretion zones as potential regeneration sites for mangroves in degraded estuarine margins. This ecological succession
reflects the inherent adaptive capacity of mangrove vegetation in re-establishing on fresh alluvium process well documented in
deltaic estuarine systems (Kuenzer et al., 2011; Sunkur et al., 2024). However, the spatial extent of such positive transitions was
relatively minor compared to the overall transformation matrix, indicating limited net gain in vegetation from water bodies.

Figure 4: Transformation of Water Body

Bare Soil Transformation

The Bare Soil class exhibited both regressive and progressive
transformations. Notably, 36.41 km? of bare land areas
reverted to Water, indicative of submergence due to tidal
encroachment, channel expansion, or erosion of unstable
sediment deposits. Conversely, 9.35 km? and 9.73 km?
transitioned into Sparse and Dense Forest, respectively-
evidence of active mangrove regeneration. These changes

Figure 5: Transformation of Bare Soil

may be attributed to sediment stability, natural revegetation
processes, or targeted afforestation efforts within conservation
projects (Negassa et al., 2020). As shown in Figure 5, these
gains are often observed in the interior zones where sediment
retention is high and anthropogenic pressure is relatively low.
Such patterns underscore the role of geomorphological
suitability and tidal sediment balance in supporting vegetation
recovery (Roy et al., 2014; Ghosh et al., 2016). Moreover,
affirm the resilience of mangrove species when favorable
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hydrological and salinity conditions are restored (Joshi ef al.,
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Figure 6: Transformation of Dense Forest

Dense Forest Transformation

Among all categories, Dense Forest exhibited the most
alarming rates of transformation. Approximately 109.12 km?
of dense forest was lost to Water, reflecting the growing
influence of estuarine erosion, relative sea-level rise, and tidal
scouring, particularly along major distributaries and the
southern coastal margins (Dasgupta et al., 2015; Bomer et al.,
2020). An additional 189.08 km? was converted to Bare Soil,
a likely consequence of deforestation for aquaculture
expansion, infrastructural encroachment, or clear-cutting,
often exacerbated by salinity intrusion and soil degradation
(Islam & Bhuiyan, 2018). The most extensive transformation,
however, involved 1054.37 km? of dense Forest converting
into Sparse Forest, indicating progressive thinning of canopy
structure, fragmentation of tree stands, and overall ecological
decline. This conversion often occurs in salinity-prone zones
and along forest edges, suggesting declining forest health due
to prolonged exposure to stressors (Patra, 2024; Uddin et al.,
2014). Figure 6 illustrates these spatial transformations
concentrated around areas of high anthropogenic interaction,
including embankment breaches and shrimp culture zones.

Sparse Forest Transformation

The Sparse Forest class reflects a transitional state-both
vulnerable to degradation and capable of recovery under
favorable conditions. A total of 52.83 km? of Sparse Forest
reverted to Water, which may be associated with tidal
intrusion, erosion along forest edges, and breaching of
embankments, particularly in low-elevation, cyclone-exposed
areas (Potapov ef al, 2012). On a more positive note, 77.11

Figure 7: Transformation of Sparse Forest
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km? of Sparse Forest transitioned into Dense Forest,
demonstrating the potential for structural regeneration when
ecological stress is mitigated. However, 23.35 km? of Sparse
Forest transitioned into Bare Soil, signifying continued
degradation, potentially due to salt stress-induced dieback or
small-scale human clearings. As seen in Figure 7, these
transitions are spatially dispersed, with regeneration mostly
occurring in the northern and central forest regions, while
degradation hotspots align with human proximity and reduced
freshwater inflow (Giri et al., 2011; Chander et al., 2009).

Collectively, these spatial transitions underscore the
ecological vulnerability of the Sundarbans. Dense Forest
retreat and Sparse Forest expansion reflect long-term
structural degradation and landscape fragmentation. The
transformation maps (Figures 3—6) identify spatial hotspots-
particularly along tidal creeks, deltaic edges, and human-
influenced zones-where intervention is urgently needed.

These findings align with global assessments of mangrove
loss and emphasize the importance of sediment dynamics,
hydrological regime shifts, and anthropogenic drivers (Roy et
al., 2014; Vermote et al, 2016). Mapping such
transformations provides empirical insight to guide ecosystem
restoration, zonal conservation, and climate adaptation
strategies tailored to this globally significant mangrove forest.

3.3 Spatial Dynamics of Land Cover Gains and Losses
(1975-2025)
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To complement the transformation analysis presented earlier,
this section quantitatively explores the spatial dynamics of
land cover gains and losses across four major land cover
classes-Water, Bare Soil, Sparse Forest, and Dense Forest-
between 1975 and 2025 in the Bangladeshi Sundarbans. This
analysis provides additional insight into the net structural
changes and ecological balance shifts over the five-decade
period. The comparative figures and metrics in Figure 6, 7
and 8 reflect the relative resilience and vulnerability of each
land cover class.

Dense Forest exhibited the most pronounced loss, accounting
for a staggering 1352.57 km? or 77.13% of the total
transformed area. This decline is consistent with prior spatial
assessments and  highlights intense  anthropogenic
deforestation, hydrological stress, and salinity intrusion,
especially in southern and peripheral zones. Despite this
considerable loss, only 136.33 km? (7.77%) of Dense Forest
was gained, indicating poor rates of regeneration and canopy
closure over time.

In contrast, Sparse Forest demonstrated a net increase in
extent. It gained approximately 1129.23 km? (64.39%)-the
largest among all classes-while losing only 153.29 km?
(8.74%). This pattern signifies a widespread transformation

from Dense to Sparse Forest, indicative of forest thinning and
structural degradation. However, it also highlights some
ecological resilience, where previously degraded zones
retained partial vegetation cover.

Bare Soil gained 289.78 km? (16.52%), often from cleared
forest zones and receding waters, while it lost only 55.49 km?
(3.16%) to re-vegetation or inundation. The net increase in
Bare Soil areas points to grow land degradation and exposure
of previously vegetated surfaces, especially along inland and
estuarine fringes.

Water bodies displayed relative balance, with a gain of 198.36
km? (11.31%) and a nearly equivalent loss of 192.35 km?
(10.97%). These changes align with tidal dynamics,
sedimentation, and seasonal riverbank shifts. The marginal
net gain in water area affirms the tidal estuary's hydro-
geomorphic volatility.

This land cover gain-loss matrix, serves as a vital spatial
diagnostic tool to understand land degradation patterns and
recovery potentials. The corresponding Figure 8 provides a
visual comparison, emphasizing the disproportionate losses in
Dense Forest and the significant rise in Sparse Forest and
Bare Soil.

Land Cover Gain and Loss in the Sundarbans (1975—
2025)
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Figure 8. Comparative Gain and Loss of Land Cover Classes in the Bangladeshi Sundarbans (1975-2025)
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These results collectively reflect the asymmetric patterns of
degradation and regeneration, offering a foundational dataset
for ecosystem management strategies and prioritization of
restoration zones.

3.4 Discussion

The results of the last five-decade analysis reveal significant
transformations in the land cover of the Sundarbans
Mangrove Forest, underscoring the intensifying ecological
vulnerability of this critical coastal ecosystem. The most
striking finding is the extensive degradation of Dense Forest
cover, which declined by approximately 1216.24 km?
(31.07%) between 1975 and 2025. This loss corresponds to
the largest proportion of total land cover transformation,
where more than 1352.57 km? of Dense Forest was converted-
largely into Sparse Forest (1054.37 km?), and to a lesser
extent into Bare Soil (189.08 km?) and Water (109.12 km?).
These transitions point directly to extensive deforestation,
canopy thinning, and habitat fragmentation, largely driven by
escalating anthropogenic activities including unregulated
aquaculture, illegal logging, embankment breaches, and
saltwater intrusion (Giri et al., 2015; Islam & Bhuiyan, 2018).

The expansion of Sparse Forest, by more than 975 km? over
the study period, represents a mixed ecological signal. While
the net increase suggests partial vegetation persistence and
regeneration in certain zones, particularly where afforestation
and sediment stabilization occurred, the dominance of Dense-
to-Sparse  Forest transitions (over 60% of total
transformations) highlights structural degradation and the
weakening of mangrove ecosystem integrity. This trend
reflects environmental stress due to hydrological alteration,
salinity fluctuation, and storm impacts (Uddin et al., 2014;
Sunkur et al., 2024). Consistent with this interpretation,
Kanjin et al. (2024) found that frequent cyclone events and
poor soil moisture in recent years were key contributors to
declining mangrove health in large tracts of the Sundarbans.

Similarly, the 299.06% increase in Bare Soil-expanding from
77.52 km? in 1975 to 309.30 km? in 2025-signals growing
land degradation and failed reforestation in sediment-exposed
and anthropogenically altered zones. These regions, often
adjacent to reclaimed areas and aquaculture plots, show signs
of prolonged salinization and erosion, especially where
vegetation fails to re-establish (Ghosh et al., 2016; Roy et al.,
2014). On the positive side, limited gains from Bare Soil to
vegetated categories (Sparse and Dense Forest) suggest
ecological resilience in selected micro-environments where
tidal flow and sediment supply remain intact.

Water bodies exhibited relatively minor net change (a gain of
just 6 km? over five decades), despite dynamic local-scale
transitions. Approximately 192.35 km? of water area was lost
to terrestrial categories, mainly Bare Soil and vegetation,
while 198.36 km? was gained. These transitions reflect the
fluid hydromorphology of the Sundarbans, shaped by tidal
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inflow, sediment accretion, riverbank migration, and possibly
upstream water management interventions such as the
Farakka Barrage (Roy et al., 2014; Patra, 2024). Although the
areal extent appears stable, this study’s scope did not include
bathymetric change, which remains a critical knowledge gap
for assessing tidal basin health and future flood resilience.
Recent research, however, has shown that mangrove
landscapes in the Sundarbans are actively adjusting their
surface elevation through sediment accretion, helping them
adapt to human-altered tidal regimes and local sea-level rise
(Bomer et al., 2020).

Spatial analysis reveals clear patterns of degradation and
regeneration. Dense Forest loss was prominent near southern
tidal interfaces and river mouths, while Sparse Forest gains
were concentrated in central and northern buffer zones.
Figures 3-6 and the gain-loss matrix in Figure 6, 7 and 8
affirm these trends. Notably, gains in Sparse Forest (1129.23
km?) significantly outpaced its losses (153.29 km?),
underscoring a widespread shift toward a lower-structure
forest condition, which, although ecologically weaker, still
offers critical services like erosion control and carbon storage.

From a methodological standpoint, the use of Maximum
Likelihood Classification (MLC) proved effective in
capturing complex transitions across time and space. A
similar approach was adopted by Chowdhury and Hafsa
(2022), who applied supervised MLC on multi-temporal
Landsat data to assess long-term land cover dynamics in the
Bangladeshi Sundarbans with high classification accuracy and

robust transition analysis. MLC allowed categorical
differentiation that was both statistically robust and
ecologically  meaningful, outperforming index-based

classification approaches such as NDVI for multitemporal
landscape mapping in mangrove ecosystems (Kanjin et al.,
2024; Ghosh et al., 2016; Lu & Weng, 2007).

Management implications of these findings are substantial.
The Sundarbans resilience depends on implementing
integrated land-use strategies that combine remote sensing
monitoring  with  ground-based afforestation, salinity
management, and freshwater regime restoration. High-risk
transformation zones identified in this study, especially
southern fringes and dense-to-sparse forest corridors-should
be prioritized for conservation investment. In addition,
promoting community-managed buffer zones and sustainable
aquaculture practices can mitigate anthropogenic pressure and
enhance long-term ecosystem stability (Uddin et al., 2014;
Patra, 2024).

In summary, this study observed extensive forest degradation,
limited regeneration, and shifting ecological baselines in the
observed Sundarbans Mangrove Forest from 1975 to 2025.
The spatial and categorical trends presented here serve as a
foundation for evidence-based policy and restoration
initiatives aimed at protecting this globally critical and
climatically vulnerable landscape.
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Al-doski, J., Mansor, S. B. and Shafri, H. Z. M. 2013. Image
classification in remote sensing. International Journal of
Engineering Research and Technology (IJERT), 2(11),
2278-0181.

Bhattacharjee, S., Islam, M. T., Kabir, M. E. and Kabir, M. M.

4. Conclusion 2021. Land-use and land-cover change detection in a
north-eastern wetland ecosystem of Bangladesh using
This study presents a comprehensive, five-decade assessment remote sensing and GIS techniques. Earth Systems and
of land cover dynamics in the Bangladeshi Sundarbans Environment, 5(2), 319-340.
Mangrove Forest, utilizing supervised Maximum Likelihood https;//doi,org/lo.1()()7/541748_021_00228_3

Classification (MLC) on atmospherically corrected Landsat
imagery. By classifying and analyzing changes in fourBomer, E. J., Wilson, C. A., Hale, R. P., Hossain, A. N. M. M. and

ecologically significant land cover types-Water, Bare Soil, Rahman, F. M. A. 2020. Surface elevation and
Sparse Forest, and Dense Forest-this research reveals long- sedimentation dynamics in the Ganges-Brahmaputra
term structural degradation and ecological stress across the tidal delta plain, Bangladesh: Evidence for mangrove
mangrove ecosystem. Transformation matrices and spatial adaptation to human-induced tidal amplification. Catena,
gain-loss assessments indicate that Dense Forest areas have 187, 104312.
undergone substantial loss, largely due to salinity intrusion, https://doi.org/10.1016/j.catena.2019.104312

reduced freshwater flow, and anthropogenic pressures. While
increases in Sparse Forest and Bare Soil suggest widespreadChander, G., Markham, B. L., and Helder, D. L. 2009. Summary

vegetation thinning and land exposure, these transitions of current radiometric calibration coefficients for
reflect degradation rather than true ecological recovery. The Landsat MSS, TM, ETM+, and EO-1 ALI sensors.
apparent stability in surface water extent masks deeper Remote Sensing of Environment, 113(5), 893-903.
hydrological transformations, underscoring the need for https://doi.org/10.1016/j.rs¢.2009.01.007

integrated studies on water depth, sedimentation, and quality.

) . o o ~ Chowdhury, M. S. and Hafsa, B. 2022. Multi-decadal land cover
This study contributes novel insight by combining multi- change analysis over Sundarbans Mangrove Forest of

decadal categorical classification with spatial transition Bangladesh: A GIS and remote sensing based approach.
mapping, offering high-resolution evidence for long-term Global Ecology and Conservation, 37, 02151.

ecosystem vulnerability. To ensure sustainability, ecosystem- https://doi.org/10.1016/j.gecc0.2022.¢02151
based management strategies-such as afforestation, salinity ) ) ’ ) ) ’

monitoring, freshwater regime restoration, and land'useDasgupta, S., Sobhan, M. 1. and Wheeler, D. 2015. Climate change
regulation-should be prioritized in ecologically sensitive

- - g and soil salinity: The case of coastal Bangladesh. Ambio,
transition zones. Moving forward, future studies should

44(8), 815-826. https://doi.org/10.1007/s13280-
015-0681-5

consider integrating bathymetric data, seasonal spectral
indices, and climate model projections to enhance
understanding of tidal dynamics and resilience pathways.
Overall, this research provides a strong foundation for policy
planning, restoration prioritization, and adaptive conservation
of one of the world’s most vulnerable coastal landscapes.
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